Mercury: RPC for High-Performance Computing

Jerome Soumagne
The HDF Group

June 23, 2017

The HDF Group

| RPC and High-Performance Computing

June 23, 2017 CS/NERSC Data Seminar

The HDF Group

RPC and High-Performance Computing Br
Remote Procedure Call (RPC)

® Allow local calls to be executed on remote resources
® Already widely used to support distributed services
- Google Protocol Buffers, etc

June 23, 2017 CS/NERSC Data Seminar

RPC and High-Performance Computing Mg
Remote Procedure Call (RPC) "

® Allow local calls to be executed on remote resources
® Already widely used to support distributed services
- Google Protocol Buffers, etc

Typical HPC applications are SPMD
® No need for RPC: control flow implicit on all nodes
® A series of SPMD programs sequentially produce & analyze data

June 23, 2017 CS/NERSC Data Seminar

RPC and High-Performance Computing Mg
Remote Procedure Call (RPC) "

® Allow local calls to be executed on remote resources
® Already widely used to support distributed services
- Google Protocol Buffers, etc

Typical HPC applications are SPMD
® No need for RPC: control flow implicit on all nodes
® A series of SPMD programs sequentially produce & analyze data

Distributed HPC workflow
® Nodes/systems dedicated to specific task
= Multiple SPMD applications/jobs execute concurrently and interact

June 23, 2017 CS/NERSC Data Seminar

RPC and High-Performance Computing ME
Remote Procedure Call (RPC) "

® Allow local calls to be executed on remote resources
® Already widely used to support distributed services
- Google Protocol Buffers, etc

Typical HPC applications are SPMD
® No need for RPC: control flow implicit on all nodes
® A series of SPMD programs sequentially produce & analyze data

Distributed HPC workflow
® Nodes/systems dedicated to specific task
= Multiple SPMD applications/jobs execute concurrently and interact

Importance of RPC growing
® Compute nodes with minimal/non-standard environment
® Heterogeneous systems (node-specific resources)
® More “service-oriented” and more complex applications
® Workflows and in-transit instead of sequences of SPMD

June 23, 2017 CS/NERSC Data Seminar

Mercury FOF

The HDF Group

June 23, 2017 CS/NERSC Data Seminar

Mercury FOF

The HDF Group

Objective

Create a reusable RPC library for use in HPC that can serve as a basis for
services such as storage systems, I/O forwarding, analysis frameworks and
other forms of inter-application communication

June 23, 2017 CS/NERSC Data Seminar

Mercury FOF

The HDF Group
ﬁ Objective
Create a reusable RPC library for use in HPC that can serve as a basis for

services such as storage systems, I/O forwarding, analysis frameworks and
other forms of inter-application communication

A

/

& en—

® Why not reuse existing RPC frameworks?

- Do not support efficient large data transfers or asynchronous calls
— Mostly built on top of TCP/IP protocols

» Need support for native transport
» Need to be easy to port to new systems

June 23, 2017 CS/NERSC Data Seminar

Mercury FOF

The HDF Group
ﬁ Objective
Create a reusable RPC library for use in HPC that can serve as a basis for

services such as storage systems, I/O forwarding, analysis frameworks and
other forms of inter-application communication

A

/

& en—

® Why not reuse existing RPC frameworks?

- Do not support efficient large data transfers or asynchronous calls
— Mostly built on top of TCP/IP protocols

» Need support for native transport
» Need to be easy to port to new systems

® Similar previous approaches with some differences

— I/O Forwarding Scalability Layer (IOFSL) — ANL
— NEtwork Scalable Service Interface (Nessie) — Sandia
- Lustre RPC — Intel

June 23, 2017 CS/NERSC Data Seminar

I Overview ko

The HDF Group

June 23, 2017 CS/NERSC Data Seminar

Overview ko

The HDF Group

® Designed to be both easily integrated and extended
- “Client” / “Server” notions abstracted
» (Server may also act as a client and vice versa)

— “Origin” / “Target” used instead

-®
@

Service Nodes (e.g., storage,
visualization, etc), s; and s3 are
targets of s

Compute Nodes, origin ¢y has
target sp

L —

June 23, 2017 CS/NERSC Data Seminar

Overview .
® Designed to be both easily integrated and extended
- “Client” / “Server” notions abstracted
» (Server may also act as a client and vice versa)
— “Origin” / “Target” used instead

Service Nodes (e.g., storage,
visualization, etc), s; and s3 are
targets of s

Compute Nodes, origin ¢y has
target sp

® Basis for accessing and enabling resilient services
- Ability to reclaim resources after failure is imperative

June 23, 2017 CS/NERSC Data Seminar

I Overview ko

The HDF Group

RPC proc | | RPC proc
/ A

June 23, 2017 CS/NERSC Data Seminar

Overview ME
® Function arguments / metadata transferred with RPC request P
- Two-sided model with unexpected / expected messaging
- Message size limited to a few kilobytes (low-latency)

Metadata (unexpected
- "I + expected messaging) I’
RPC proc ; » RPC proc

’ N

June 23, 2017 CS/NERSC Data Seminar

Overview Mg
® Function arguments / metadata transferred with RPC request P
- Two-sided model with unexpected / expected messaging
- Message size limited to a few kilobytes (low-latency)
® Bulk data transferred using separate and dedicated API
- One-sided model that exposes RMA semantics (high-bandwidth)

Metadata (unexpected
- "I + expected messaging) <
RPC proc ; RPC proc

’ N

Bulk Data (RMA transfer)

v

June 23, 2017 CS/NERSC Data Seminar

Overview FF
® Function arguments / metadata transferred with RPC request HoF G
- Two-sided model with unexpected / expected messaging
- Message size limited to a few kilobytes (low-latency)
® Bulk data transferred using separate and dedicated API
- One-sided model that exposes RMA semantics (high-bandwidth)
®m Network Abstraction Layer
- Allows definition of multiple network plugins
» MPI and BMI plugins first plugins
» Shared-memory plugin (mmap + CMA, supported on Cray w/CLES6)
» CCI plugin contributed by ORNL
» Libfabric plugin contributed by Intel (support for Cray GNI)

Metadata (unexpected
- "I + expected messaging) <
RPC proc ; ' RPC proc

1
S oo
% Bulk Data (RMA transfer) %

§ §

Network Abstraction Layer

v

June 23, 2017 CS/NERSC Data Seminar

| Remote Procedure Call HF

The HDF Group

® Mechanism used to send an RPC request (may also ignore response)

(ids | - |ian] (ids | -~ |ian]

m

June 23, 2017 CS/NERSC Data Seminar

| Remote Procedure Call

® Mechanism used to send an RPC request (may also ignore response)

1. Register call
and get request id

[id1

v

|

June 23, 2017

1. Register call
and get request id

[id1 idN]

CS/NERSC Data Seminar

The HDF Group

| Remote Procedure Call HF

The HDF Group

® Mechanism used to send an RPC request (may also ignore response)

[id1 idN] [id1 idN]
2. (Pre-post receive for tar-

get response) Post unex-
pected send with request id
and serialized parameters

— T
=
U

2. Post receive for unex-
pected request / Make progress

June 23, 2017 CS/NERSC Data Seminar

| Remote Procedure Call

® Mechanism used to send an RPC request (may also ignore response)

[id1

v

June 23, 2017

CS/NERSC Data Seminar

[id1

dn

3. Execute call

The HDF Group

| Remote Procedure Call

® Mechanism used to send an RPC request (may also ignore response)

[id1

v

(ids | -~ |ian]

m

4, Make progress

June 23, 2017

. Post send with se-
nallzed response)

CS/NERSC Data Seminar

The HDF Group

Progress Model

® Callback-based model with completion queue

® Explicit progress with HG_Progress () and
HG_Trigger ()
— Allows user to create workflow
- No need to have an explicit wait call (shim layers

possible)
- Facilitate operation scheduling, multi-threaded
execution and cancellation!

June 23, 2017

The HDF Group

Push on Completion

[Callback 1 |
[Callback ... |

[Callback ... |

do {
unsigned int actual_count = 0;
do {
ret = HG Trigger (context, 0, 1, &actual_count);
} while ((ret == HG_SUCCESS) && actual_count);
if (done)
break;
ret = HG_Progress (context, HG_MAX_IDLE_TIME) ;
} while (ret == HG_SUCCESS);

CS/NERSC Data Seminar

<

Pop and execute callback
<> Callback N

Callbacks may be wrapped around pthreads, etc

| Remote Procedure Call: Example
® QOrigin snippet (Callback model):

June 23, 2017

open_in_t in_struct;

/+ Initialize the interface and get target address */

hg_class = HG Init ("ofi+tcp://eth0:22222", HG_FALSE);

hg_context = HG_Context_ create (hg_class);

[...]

HG_Addr_ lookup wait (hg_context, target_name, &target_addr);

/* Register RPC call x*/

rpc_id = MERCURY REGISTER (hg_class, "open", open_in_t, open_out_t);

/* Set input parameters */
in_struct.in_param0 = in_param0;

/* Create RPC request */
HG_Create (hg_context, target_addr, rpc_id, &hg_handle);

/* Send RPC request */
HG_Forward(hg_handle, rpc_done_cb, &rpc_done_args, &in_struct);

/* Make progress */
[...]

CS/NERSC Data Seminar

The HDF Group

Remote Procedure Call: Example FOF

The HDF Group
® QOrigin snippet (next):
hg_return_t

rpc_done_cb (const struct hg_cb_info *callback_info)

{

open_out_t out_struct;

/* Get output */
HG_Get_output (callback_info->handle, &out_struct);

/* Get output parameters */
ret = out_struct.ret;
out_param0 = out_struct.out_paramO;

/* Free output */
HG_Free output (callback_info->handle, &out_struct);

return HG_SUCCESS;
}

® Cancellation: HG_Cancel () on handle
- Callback still triggered (canceled = completion)

June 23, 2017 CS/NERSC Data Seminar

Remote Procedure Call: Example FOF

June 23, 2017

The HDF Group

® Target snippet (main loop):

int
main (int argc, void *argv[])
{
/* Initialize the interface and listen */

hg_class = HG Init("ofi+tcp://eth0:22222", HG_TRUE);
[...]

/* Register RPC call */

MERCURY_ REGISTER (hg_class, "open", open_in_t, open_out_t, open_rpc_cb);
/* Make progress */

[...]

/* Finalize the interface */
[...]

CS/NERSC Data Seminar

Remote Procedure Call: Example
® Target snippet (RPC callback):

hg_return_t
open_rpc_cb (hg_handle_t handle)

June 23, 2017

{

open_in_t in_struct;
open_out_t out_struct;

/* Get input */
HG_Get_input (handle, &in_struct);
in_param0 = in_struct.in_param0;

/* Execute call */
out_param0 = open (in_param0, ...);

/* Set output */
open_out_struct.out_param0 = out_paramO;

/* Send response back to origin */
HG_Respond (handle, NULL, NULL, &out_struct);

/+* Free input and destroy handle */
HG_Free_ input (handle, &in_struct);
HG_Destroy (handle) ;

return HG_SUCCESS;
CS/NERSC Data Seminar

The HDF Group

I Bulk Data Transfers

June 23, 2017

CS/NERSC Data Seminar

The HDF Group

I Bulk Data Transfers F o
ey The HDF Group
Definition
Bulk Data: Variable length data that is (or could be) too large to send eagerly and might need
special processing.

m

June 23, 2017 CS/NERSC Data Seminar =

| Bulk Data Transfers Mgp 12)
Definition
Bulk Data: Variable length data that is (or could be) too large to send eagerly and might need
special processing.

® Transfer controlled by target (better flow control)
® Memory buffer(s) abstracted by handle
® Handle must be serialized and exchanged using other means

1. Register local memory 1. Register local memory
segment and get handle segment and get handle

m

June 23, 2017 CS/NERSC Data Seminar =

Bulk Data Transfers Mgp ®
Definition
Bulk Data: Variable length data that is (or could be) too large to send eagerly and might need
special processing.

® Transfer controlled by target (better flow control)
® Memory buffer(s) abstracted by handle
® Handle must be serialized and exchanged using other means

1. Register local memory 1. Register local memory
segment and get handle segment and get handle

2. Send serial-
ized memory handle

m

June 23, 2017 CS/NERSC Data Seminar =

Bulk Data Transfers FOF
ey The HDF Group
Definition
Bulk Data: Variable length data that is (or could be) too large to send eagerly and might need
special processing.

® Transfer controlled by target (better flow control)
® Memory buffer(s) abstracted by handle
® Handle must be serialized and exchanged using other means

1. Register local memory 1. Register local memory
segment and get handle segment and get handle

2. Send serial-
ized memory handle

Target

_/

3. Post push/pull operation using
local/deserialized remote handles

June 23, 2017 CS/NERSC Data Seminar

Bulk Data Transfers FOF (12
ey The HDF Group
Definition
Bulk Data: Variable length data that is (or could be) too large to send eagerly and might need
special processing.

® Transfer controlled by target (better flow control)
® Memory buffer(s) abstracted by handle
® Handle must be serialized and exchanged using other means

1. Register local memory 1. Register local memory
segment and get handle segment and get handle

2. Send serial-
ized memory handle

3. Post push/pull operation using
local/deserialized remote handles

Target

4. Test completion
of remote put/get

June 23, 2017 CS/NERSC Data Seminar

Bulk Data Transfers: Example FOF

The HDF Group

® QOrigin snippet (contiguous):

June 23, 2017

/* Initialize the interface and get target address #*/
[...]

/* Create bulk handle (only change) */
HG _Bulk create (hg_info->hg_bulk_class, 1, &buf, &buf_size, HG_BULK_READ_ONLY, &
bulk_handle) ;

/* Attach bulk handle to input parameters */
[...]
in_struct.bulk_handle = bulk_handle;

/* Create RPC request */
HG Create (hg_context, target_addr, rpc_id, &hg_handle);

/* Send RPC request */
HG_Forward (hg_handle, rpc_done_cb, &rpc_done_args, &in_struct);

/* Make progress */
[...]

CS/NERSC Data Seminar

| Bulk Data Transfers: Example

® Target snippet (RPC callback):

June 23, 2017

/* Get input parameters and bulk handle */
HG_Get_input (handle, &in_struct);

[...]

origin_bulk_handle = in_struct.bulk_handle;

/* Get size of data and allocate buffer */
nbytes = HG_Bulk_get_size (bulk_handle);

/* Create block handle to read data */
HG_Bulk_create (hg_info->hg_bulk_class, 1, NULL, &nbytes,
HG_BULK_READWRITE, &local_bulk_handle);

/+* Start pulling bulk data (execute call / send response in callback) */
HG Bulk transfer (hg_info->bulk_context, bulk_transfer_cb,
bulk_args, HG_BULK_PULL, hg_info->addr, origin_bulk_handle, O,
local_bulk_handle, 0, nbytes, HG_OP_ID_IGNORE);

CS/NERSC Data Seminar

The HDF Group

Non-contiguous Bulk Data Transfers FOF

The HDF Group

® Non contiguous memory is registered through bulk data interface...

hg_return_t HG_Bulk create(
hg_bulk_class_t xhg_bulk_class,
hg_size_t count,
void xxbuf_ptrs,
const hg_size_t xbuf_sizes,
hg_uint8_t flags,
hg_bulk_t xhandle
)i

m __.and allows for scatter/gather memory transfers using virtual memory offsets and length
® QOrigin unaware of target memory layout

June 23, 2017 CS/NERSC Data Seminar

| Macros FOF

The HDF Group

m Generate as much boilerplate code as possible for

June 23, 2017 CS/NERSC Data Seminar

Macros FOF

The HDF Group

® Generate as much boilerplate code as possible for
- Serialization / deserialization of parameters

June 23, 2017 CS/NERSC Data Seminar

Macros FOF

The HDF Group

® Generate as much boilerplate code as possible for

- Serialization / deserialization of parameters
- Sending / executing RPC

June 23, 2017 CS/NERSC Data Seminar

Macros FOF

The HDF Group

® Generate as much boilerplate code as possible for

- Serialization / deserialization of parameters
- Sending / executing RPC

® Single include header file shared between origin and target

June 23, 2017 CS/NERSC Data Seminar

Macros FOF

The HDF Group

® Generate as much boilerplate code as possible for

- Serialization / deserialization of parameters
- Sending / executing RPC

® Single include header file shared between origin and target
® Make use of BOOST preprocessor for macro definition

June 23, 2017 CS/NERSC Data Seminar

Macros FOF

The HDF Group

® Generate as much boilerplate code as possible for

- Serialization / deserialization of parameters
- Sending / executing RPC

® Single include header file shared between origin and target

® Make use of BOOST preprocessor for macro definition
- Generate serialization / deserialization functions and structure that contains parameters

June 23, 2017 CS/NERSC Data Seminar

| Macros: Serialization / Deserialization

MERCURY_GEN_PROC (
struct_type_name,
fields

MERCURY_GEN_PROC (
open_in_t,
((hg_string_t) (path))
((int32_t) (flags))
((uint32_t) (mode))

June 23, 2017

Generates
proc and struct

Generated Code

The HDF Group

/+ Define open_in_ t */

typedef struct {
hg_string_t path;
int32_t flags;
uint32_t mode;

) open_in_t;

/* Define hg proc_open_in t */

static inline hg_return_t

hg_proc_open_in_t (hg_proc_t proc, void xdata)
{

hg_return_t ret = HG_SUCCESS;
open_in_t sstruct_data - (open_in t) data;

ret - hg_proc_hg_string_t (proc, &struct_data->path);
if (ret != HG_SUCCESS) {

ret = HG_FAIL;
return ret;

ret = hg_proc_int32_t (proc, &struct_data->flags);
if (ret != HG_SUCCESS) {

HG_LOG_ERROR ("Proc error");

ret = HG_FAIL;

return ret;

ret = hg_proc_uint32_t (proc, &struct_data->mode);
if (ret HG_SUCCESS) {

HG_LOG_ERROR ("Proc error");

ret = HG_FAIL;

return ret;

return ret;

CS/NERSC Data Seminar

| Mercury in HDF5 Stack

June 23, 2017

CS/NERSC Data Seminar

The HDF Group

©

I Mercury in HDF5 Stack o o

HDF5 API

Virtual Object Layer °
VOL plugins
Native (H5)| | Mge;a:e::a Remote >

Raw
Mapping

Y
Virtual M
File Layer ercury
VFL drivers

posix sec split

[[mweito

File System

CS/NERSC Data Seminar

June 23, 2017

| Other projects that already use Mercury

Mochi (ANL) — — — — — >
DAOS (Intel)

DeltaFS (CMU)

PDC (LBNL)

MDHIM? / Legion? (LANL)

June 23, 2017

“Glue” holding

resources together

User-space network
access (could be

OF/libfabic)
1000 —
Read o c2
100 :
3 <
s R
| S
5
<]
‘0 : . <, s @ Oy 205%.5,.7,
By 7 € o G A A A
® ‘%‘é’@(’e@@ﬁ’e@%ﬁ@ﬁ

Client

Slorage AP

F o

The HDF Group
User-space
Server storage device
access
e

Memory

(Argobots) H bindings (Margo) abstraction (NVML)

(Argobots) |_| bindings (Margo)
RPC manzgemenl
en:urw
Nelwﬂrk abstraction
(ccn

RPC management
(Mercury)

NVM device

Network abstraction
(ccl)

Access size (bytes)

CS/NERSC Data Seminar

Network fabric

Protocol modes:

Eager mode, data is packed into
RPC msg

[Data is copied to/from pre-registered

RDMA buffers

— RDMA “in place” by registering

memory on demand

I Current and Future Work

June 23, 2017

CS/NERSC Data Seminar

The HDF Group

®

I Current and Future Work

= Support cancel operations of ongoing RPC calls ([dohe)
® Shared-memory plugin and multi-progress (@ohe)

June 23, 2017 CS/NERSC Data Seminar

The HDF Group

®

Current and Future Work HF

The HDF Group

Support cancel operations of ongoing RPC calls (done
Shared-memory plugin and multi-progress (done
® Transparent Shared-memory selection ongoing

Libfabric plugin and DRC support (auth keys) ongoing
® Group membership and Publish/subscribe model ongoing

June 23, 2017 CS/NERSC Data Seminar

Where to go next FOF

The HDF Group
® Mercury project page
- http://mercury-hpc.github.io/
- https://www.mcs.anl.gov/research/projects/mochi/tutorials/
- https://github.com/mercury-hpc
- Download / Documentation / Source / Mailing-lists
® Current and previous contributors (non exhaustive): Phil Carns (ANL), Rob Ross (ANL),
Scott Atchley (ORNL), Chuck Cranor (CMU), Xuezhao Liu (Intel), Quincey Koziol,
Mohamad Chaarawi, John Jenkins, Dries Kimpe

® Work supported by DOE Office of Science Advanced Scientific Computing Research
(ASCR) research and by NSF Directorate for Computer & Information Science &
Engineering (CISE) Division of Computing and Communication Foundations (CCF) core
program funding

http://mercury-hpc.github.io/
https://www.mcs.anl.gov/research/projects/mochi/tutorials/
https://github.com/mercury-hpc

