
Mercury: RPC for High-Performance Computing

Jerome Soumagne
The HDF Group

June 23, 2017

RPC and High-Performance Computing 2

Remote Procedure Call (RPC)
� Allow local calls to be executed on remote resources
� Already widely used to support distributed services

– Google Protocol Buffers, etc

Typical HPC applications are SPMD
� No need for RPC: control flow implicit on all nodes
� A series of SPMD programs sequentially produce & analyze data

Distributed HPC workflow
� Nodes/systems dedicated to specific task
� Multiple SPMD applications/jobs execute concurrently and interact

Importance of RPC growing
� Compute nodes with minimal/non-standard environment
� Heterogeneous systems (node-specific resources)
� More “service-oriented” and more complex applications
� Workflows and in-transit instead of sequences of SPMD

June 23, 2017 CS/NERSC Data Seminar

RPC and High-Performance Computing 2

Remote Procedure Call (RPC)
� Allow local calls to be executed on remote resources
� Already widely used to support distributed services

– Google Protocol Buffers, etc

Typical HPC applications are SPMD
� No need for RPC: control flow implicit on all nodes
� A series of SPMD programs sequentially produce & analyze data

Distributed HPC workflow
� Nodes/systems dedicated to specific task
� Multiple SPMD applications/jobs execute concurrently and interact

Importance of RPC growing
� Compute nodes with minimal/non-standard environment
� Heterogeneous systems (node-specific resources)
� More “service-oriented” and more complex applications
� Workflows and in-transit instead of sequences of SPMD

June 23, 2017 CS/NERSC Data Seminar

RPC and High-Performance Computing 2

Remote Procedure Call (RPC)
� Allow local calls to be executed on remote resources
� Already widely used to support distributed services

– Google Protocol Buffers, etc

Typical HPC applications are SPMD
� No need for RPC: control flow implicit on all nodes
� A series of SPMD programs sequentially produce & analyze data

Distributed HPC workflow
� Nodes/systems dedicated to specific task
� Multiple SPMD applications/jobs execute concurrently and interact

Importance of RPC growing
� Compute nodes with minimal/non-standard environment
� Heterogeneous systems (node-specific resources)
� More “service-oriented” and more complex applications
� Workflows and in-transit instead of sequences of SPMD

June 23, 2017 CS/NERSC Data Seminar

RPC and High-Performance Computing 2

Remote Procedure Call (RPC)
� Allow local calls to be executed on remote resources
� Already widely used to support distributed services

– Google Protocol Buffers, etc

Typical HPC applications are SPMD
� No need for RPC: control flow implicit on all nodes
� A series of SPMD programs sequentially produce & analyze data

Distributed HPC workflow
� Nodes/systems dedicated to specific task
� Multiple SPMD applications/jobs execute concurrently and interact

Importance of RPC growing
� Compute nodes with minimal/non-standard environment
� Heterogeneous systems (node-specific resources)
� More “service-oriented” and more complex applications
� Workflows and in-transit instead of sequences of SPMD

June 23, 2017 CS/NERSC Data Seminar

RPC and High-Performance Computing 2

Remote Procedure Call (RPC)
� Allow local calls to be executed on remote resources
� Already widely used to support distributed services

– Google Protocol Buffers, etc

Typical HPC applications are SPMD
� No need for RPC: control flow implicit on all nodes
� A series of SPMD programs sequentially produce & analyze data

Distributed HPC workflow
� Nodes/systems dedicated to specific task
� Multiple SPMD applications/jobs execute concurrently and interact

Importance of RPC growing
� Compute nodes with minimal/non-standard environment
� Heterogeneous systems (node-specific resources)
� More “service-oriented” and more complex applications
� Workflows and in-transit instead of sequences of SPMD

June 23, 2017 CS/NERSC Data Seminar

Mercury 3

Objective
Create a reusable RPC library for use in HPC that can serve as a basis for
services such as storage systems, I/O forwarding, analysis frameworks and
other forms of inter-application communication

� Why not reuse existing RPC frameworks?
– Do not support efficient large data transfers or asynchronous calls
– Mostly built on top of TCP/IP protocols
I Need support for native transport
I Need to be easy to port to new systems

� Similar previous approaches with some differences
– I/O Forwarding Scalability Layer (IOFSL) – ANL
– NEtwork Scalable Service Interface (Nessie) – Sandia
– Lustre RPC – Intel

June 23, 2017 CS/NERSC Data Seminar

Mercury 3

Objective
Create a reusable RPC library for use in HPC that can serve as a basis for
services such as storage systems, I/O forwarding, analysis frameworks and
other forms of inter-application communication

� Why not reuse existing RPC frameworks?
– Do not support efficient large data transfers or asynchronous calls
– Mostly built on top of TCP/IP protocols
I Need support for native transport
I Need to be easy to port to new systems

� Similar previous approaches with some differences
– I/O Forwarding Scalability Layer (IOFSL) – ANL
– NEtwork Scalable Service Interface (Nessie) – Sandia
– Lustre RPC – Intel

June 23, 2017 CS/NERSC Data Seminar

Mercury 3

Objective
Create a reusable RPC library for use in HPC that can serve as a basis for
services such as storage systems, I/O forwarding, analysis frameworks and
other forms of inter-application communication

� Why not reuse existing RPC frameworks?
– Do not support efficient large data transfers or asynchronous calls
– Mostly built on top of TCP/IP protocols
I Need support for native transport
I Need to be easy to port to new systems

� Similar previous approaches with some differences
– I/O Forwarding Scalability Layer (IOFSL) – ANL
– NEtwork Scalable Service Interface (Nessie) – Sandia
– Lustre RPC – Intel

June 23, 2017 CS/NERSC Data Seminar

Mercury 3

Objective
Create a reusable RPC library for use in HPC that can serve as a basis for
services such as storage systems, I/O forwarding, analysis frameworks and
other forms of inter-application communication

� Why not reuse existing RPC frameworks?
– Do not support efficient large data transfers or asynchronous calls
– Mostly built on top of TCP/IP protocols
I Need support for native transport
I Need to be easy to port to new systems

� Similar previous approaches with some differences
– I/O Forwarding Scalability Layer (IOFSL) – ANL
– NEtwork Scalable Service Interface (Nessie) – Sandia
– Lustre RPC – Intel

June 23, 2017 CS/NERSC Data Seminar

Overview 4

� Designed to be both easily integrated and extended
– “Client” / “Server” notions abstracted

I (Server may also act as a client and vice versa)

– “Origin” / “Target” used instead

s1

s2

s3

c1

c2

c3

s1

s2

s3

Compute Nodes, origin c1 has
target s2

Service Nodes (e.g., storage,
visualization, etc), s1 and s3 are
targets of s2

� Basis for accessing and enabling resilient services
– Ability to reclaim resources after failure is imperative

June 23, 2017 CS/NERSC Data Seminar

Overview 4

� Designed to be both easily integrated and extended
– “Client” / “Server” notions abstracted

I (Server may also act as a client and vice versa)

– “Origin” / “Target” used instead

s1

s2

s3

c1

c2

c3

s1

s2

s3

Compute Nodes, origin c1 has
target s2

Service Nodes (e.g., storage,
visualization, etc), s1 and s3 are
targets of s2

� Basis for accessing and enabling resilient services
– Ability to reclaim resources after failure is imperative

June 23, 2017 CS/NERSC Data Seminar

Overview 4

� Designed to be both easily integrated and extended
– “Client” / “Server” notions abstracted

I (Server may also act as a client and vice versa)

– “Origin” / “Target” used instead

s1

s2

s3

c1

c2

c3

s1

s2

s3

Compute Nodes, origin c1 has
target s2

Service Nodes (e.g., storage,
visualization, etc), s1 and s3 are
targets of s2

� Basis for accessing and enabling resilient services
– Ability to reclaim resources after failure is imperative

June 23, 2017 CS/NERSC Data Seminar

Overview 5

� Function arguments / metadata transferred with RPC request
– Two-sided model with unexpected / expected messaging
– Message size limited to a few kilobytes (low-latency)

� Bulk data transferred using separate and dedicated API
– One-sided model that exposes RMA semantics (high-bandwidth)

� Network Abstraction Layer
– Allows definition of multiple network plugins

I MPI and BMI plugins first plugins
I Shared-memory plugin (mmap + CMA, supported on Cray w/CLE6)
I CCI plugin contributed by ORNL
I Libfabric plugin contributed by Intel (support for Cray GNI)

Origin Target

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

June 23, 2017 CS/NERSC Data Seminar

Overview 5
� Function arguments / metadata transferred with RPC request

– Two-sided model with unexpected / expected messaging
– Message size limited to a few kilobytes (low-latency)

� Bulk data transferred using separate and dedicated API
– One-sided model that exposes RMA semantics (high-bandwidth)

� Network Abstraction Layer
– Allows definition of multiple network plugins

I MPI and BMI plugins first plugins
I Shared-memory plugin (mmap + CMA, supported on Cray w/CLE6)
I CCI plugin contributed by ORNL
I Libfabric plugin contributed by Intel (support for Cray GNI)

Origin Target

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

June 23, 2017 CS/NERSC Data Seminar

Overview 5
� Function arguments / metadata transferred with RPC request

– Two-sided model with unexpected / expected messaging
– Message size limited to a few kilobytes (low-latency)

� Bulk data transferred using separate and dedicated API
– One-sided model that exposes RMA semantics (high-bandwidth)

� Network Abstraction Layer
– Allows definition of multiple network plugins

I MPI and BMI plugins first plugins
I Shared-memory plugin (mmap + CMA, supported on Cray w/CLE6)
I CCI plugin contributed by ORNL
I Libfabric plugin contributed by Intel (support for Cray GNI)

Origin Target

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

June 23, 2017 CS/NERSC Data Seminar

Overview 5
� Function arguments / metadata transferred with RPC request

– Two-sided model with unexpected / expected messaging
– Message size limited to a few kilobytes (low-latency)

� Bulk data transferred using separate and dedicated API
– One-sided model that exposes RMA semantics (high-bandwidth)

� Network Abstraction Layer
– Allows definition of multiple network plugins

I MPI and BMI plugins first plugins
I Shared-memory plugin (mmap + CMA, supported on Cray w/CLE6)
I CCI plugin contributed by ORNL
I Libfabric plugin contributed by Intel (support for Cray GNI)

Origin Target

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

June 23, 2017 CS/NERSC Data Seminar

Remote Procedure Call 6

� Mechanism used to send an RPC request (may also ignore response)

Origin Target

id1 ... idN id1 ... idN

1. Register call
and get request id

1. Register call
and get request id

2. (Pre-post receive for tar-
get response) Post unex-

pected send with request id
and serialized parameters

2. Post receive for unex-
pected request / Make progress

3. Execute call4. Make progress

(4. Post send with se-
rialized response)

June 23, 2017 CS/NERSC Data Seminar

Remote Procedure Call 6

� Mechanism used to send an RPC request (may also ignore response)

Origin Target

id1 ... idN id1 ... idN

1. Register call
and get request id

1. Register call
and get request id

2. (Pre-post receive for tar-
get response) Post unex-

pected send with request id
and serialized parameters

2. Post receive for unex-
pected request / Make progress

3. Execute call4. Make progress

(4. Post send with se-
rialized response)

June 23, 2017 CS/NERSC Data Seminar

Remote Procedure Call 6

� Mechanism used to send an RPC request (may also ignore response)

Origin Target

id1 ... idN id1 ... idN

1. Register call
and get request id

1. Register call
and get request id

2. (Pre-post receive for tar-
get response) Post unex-

pected send with request id
and serialized parameters

2. Post receive for unex-
pected request / Make progress

3. Execute call4. Make progress

(4. Post send with se-
rialized response)

June 23, 2017 CS/NERSC Data Seminar

Remote Procedure Call 6

� Mechanism used to send an RPC request (may also ignore response)

Origin Target

id1 ... idN id1 ... idN

1. Register call
and get request id

1. Register call
and get request id

2. (Pre-post receive for tar-
get response) Post unex-

pected send with request id
and serialized parameters

2. Post receive for unex-
pected request / Make progress

3. Execute call

4. Make progress

(4. Post send with se-
rialized response)

June 23, 2017 CS/NERSC Data Seminar

Remote Procedure Call 6

� Mechanism used to send an RPC request (may also ignore response)

Origin Target

id1 ... idN id1 ... idN

1. Register call
and get request id

1. Register call
and get request id

2. (Pre-post receive for tar-
get response) Post unex-

pected send with request id
and serialized parameters

2. Post receive for unex-
pected request / Make progress

3. Execute call

4. Make progress

(4. Post send with se-
rialized response)

June 23, 2017 CS/NERSC Data Seminar

Progress Model 7

� Callback-based model with completion queue
� Explicit progress with HG Progress() and
HG Trigger()

– Allows user to create workflow
– No need to have an explicit wait call (shim layers

possible)
– Facilitate operation scheduling, multi-threaded

execution and cancellation!

Progress Callback 1

Callback ...

Callback ...

Callback NTrigger

Push on Completion

Pop and execute callback

Callbacks may be wrapped around pthreads, etc

do {
unsigned int actual_count = 0;

do {
ret = HG_Trigger(context, 0, 1, &actual_count);

} while ((ret == HG_SUCCESS) && actual_count);

if (done)
break;

ret = HG_Progress(context, HG_MAX_IDLE_TIME);
} while (ret == HG_SUCCESS);

June 23, 2017 CS/NERSC Data Seminar

Remote Procedure Call: Example 8
� Origin snippet (Callback model):

open_in_t in_struct;

/* Initialize the interface and get target address */
hg_class = HG_Init("ofi+tcp://eth0:22222", HG_FALSE);
hg_context = HG_Context_create(hg_class);
[...]
HG_Addr_lookup_wait(hg_context, target_name, &target_addr);

/* Register RPC call */
rpc_id = MERCURY_REGISTER(hg_class, "open", open_in_t, open_out_t);

/* Set input parameters */
in_struct.in_param0 = in_param0;

/* Create RPC request */
HG_Create(hg_context, target_addr, rpc_id, &hg_handle);

/* Send RPC request */
HG_Forward(hg_handle, rpc_done_cb, &rpc_done_args, &in_struct);

/* Make progress */
[...]

June 23, 2017 CS/NERSC Data Seminar

Remote Procedure Call: Example 9

� Origin snippet (next):
hg_return_t
rpc_done_cb(const struct hg_cb_info *callback_info)
{
open_out_t out_struct;

/* Get output */
HG_Get_output(callback_info->handle, &out_struct);

/* Get output parameters */
ret = out_struct.ret;
out_param0 = out_struct.out_param0;

/* Free output */
HG_Free_output(callback_info->handle, &out_struct);

return HG_SUCCESS;
}

� Cancellation: HG Cancel() on handle
– Callback still triggered (canceled = completion)

June 23, 2017 CS/NERSC Data Seminar

Remote Procedure Call: Example 10

� Target snippet (main loop):
int
main(int argc, void *argv[])
{
/* Initialize the interface and listen */
hg_class = HG_Init("ofi+tcp://eth0:22222", HG_TRUE);
[...]

/* Register RPC call */
MERCURY_REGISTER(hg_class, "open", open_in_t, open_out_t, open_rpc_cb);

/* Make progress */
[...]

/* Finalize the interface */
[...]

}

June 23, 2017 CS/NERSC Data Seminar

Remote Procedure Call: Example 11

� Target snippet (RPC callback):
hg_return_t
open_rpc_cb(hg_handle_t handle)
{
open_in_t in_struct;
open_out_t out_struct;

/* Get input */
HG_Get_input(handle, &in_struct);
in_param0 = in_struct.in_param0;

/* Execute call */
out_param0 = open(in_param0, ...);

/* Set output */
open_out_struct.out_param0 = out_param0;

/* Send response back to origin */
HG_Respond(handle, NULL, NULL, &out_struct);

/* Free input and destroy handle */
HG_Free_input(handle, &in_struct);
HG_Destroy(handle);

return HG_SUCCESS;
}June 23, 2017 CS/NERSC Data Seminar

Bulk Data Transfers 12

Definition
Bulk Data: Variable length data that is (or could be) too large to send eagerly and might need
special processing.

� Transfer controlled by target (better flow control)
� Memory buffer(s) abstracted by handle
� Handle must be serialized and exchanged using other means

Origin Target

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serial-
ized memory handle

3. Post push/pull operation using
local/deserialized remote handles

4. Test completion
of remote put/get

June 23, 2017 CS/NERSC Data Seminar

Bulk Data Transfers 12
Definition
Bulk Data: Variable length data that is (or could be) too large to send eagerly and might need
special processing.

� Transfer controlled by target (better flow control)
� Memory buffer(s) abstracted by handle
� Handle must be serialized and exchanged using other means

Origin Target

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serial-
ized memory handle

3. Post push/pull operation using
local/deserialized remote handles

4. Test completion
of remote put/get

June 23, 2017 CS/NERSC Data Seminar

Bulk Data Transfers 12
Definition
Bulk Data: Variable length data that is (or could be) too large to send eagerly and might need
special processing.

� Transfer controlled by target (better flow control)
� Memory buffer(s) abstracted by handle
� Handle must be serialized and exchanged using other means

Origin Target

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serial-
ized memory handle

3. Post push/pull operation using
local/deserialized remote handles

4. Test completion
of remote put/get

June 23, 2017 CS/NERSC Data Seminar

Bulk Data Transfers 12
Definition
Bulk Data: Variable length data that is (or could be) too large to send eagerly and might need
special processing.

� Transfer controlled by target (better flow control)
� Memory buffer(s) abstracted by handle
� Handle must be serialized and exchanged using other means

Origin Target

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serial-
ized memory handle

3. Post push/pull operation using
local/deserialized remote handles

4. Test completion
of remote put/get

June 23, 2017 CS/NERSC Data Seminar

Bulk Data Transfers 12
Definition
Bulk Data: Variable length data that is (or could be) too large to send eagerly and might need
special processing.

� Transfer controlled by target (better flow control)
� Memory buffer(s) abstracted by handle
� Handle must be serialized and exchanged using other means

Origin Target

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serial-
ized memory handle

3. Post push/pull operation using
local/deserialized remote handles

4. Test completion
of remote put/get

June 23, 2017 CS/NERSC Data Seminar

Bulk Data Transfers 12
Definition
Bulk Data: Variable length data that is (or could be) too large to send eagerly and might need
special processing.

� Transfer controlled by target (better flow control)
� Memory buffer(s) abstracted by handle
� Handle must be serialized and exchanged using other means

Origin Target

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serial-
ized memory handle

3. Post push/pull operation using
local/deserialized remote handles

4. Test completion
of remote put/get

June 23, 2017 CS/NERSC Data Seminar

Bulk Data Transfers: Example 13

� Origin snippet (contiguous):
/* Initialize the interface and get target address */
[...]

/* Create bulk handle (only change) */
HG_Bulk_create(hg_info->hg_bulk_class, 1, &buf, &buf_size, HG_BULK_READ_ONLY, &

bulk_handle);

/* Attach bulk handle to input parameters */
[...]
in_struct.bulk_handle = bulk_handle;

/* Create RPC request */
HG_Create(hg_context, target_addr, rpc_id, &hg_handle);

/* Send RPC request */
HG_Forward(hg_handle, rpc_done_cb, &rpc_done_args, &in_struct);

/* Make progress */
[...]

June 23, 2017 CS/NERSC Data Seminar

Bulk Data Transfers: Example 14

� Target snippet (RPC callback):
/* Get input parameters and bulk handle */
HG_Get_input(handle, &in_struct);
[...]
origin_bulk_handle = in_struct.bulk_handle;

/* Get size of data and allocate buffer */
nbytes = HG_Bulk_get_size(bulk_handle);

/* Create block handle to read data */
HG_Bulk_create(hg_info->hg_bulk_class, 1, NULL, &nbytes,
HG_BULK_READWRITE, &local_bulk_handle);

/* Start pulling bulk data (execute call / send response in callback) */
HG_Bulk_transfer(hg_info->bulk_context, bulk_transfer_cb,
bulk_args, HG_BULK_PULL, hg_info->addr, origin_bulk_handle, 0,
local_bulk_handle, 0, nbytes, HG_OP_ID_IGNORE);

June 23, 2017 CS/NERSC Data Seminar

Non-contiguous Bulk Data Transfers 15

� Non contiguous memory is registered through bulk data interface...
hg_return_t HG_Bulk_create(

hg_bulk_class_t *hg_bulk_class,
hg_size_t count,
void **buf_ptrs,
const hg_size_t *buf_sizes,
hg_uint8_t flags,
hg_bulk_t *handle
);

� ...and allows for scatter/gather memory transfers using virtual memory offsets and length
� Origin unaware of target memory layout

June 23, 2017 CS/NERSC Data Seminar

Macros 16

� Generate as much boilerplate code as possible for

– Serialization / deserialization of parameters
– Sending / executing RPC

� Single include header file shared between origin and target
� Make use of BOOST preprocessor for macro definition

– Generate serialization / deserialization functions and structure that contains parameters

June 23, 2017 CS/NERSC Data Seminar

Macros 16

� Generate as much boilerplate code as possible for
– Serialization / deserialization of parameters

– Sending / executing RPC

� Single include header file shared between origin and target
� Make use of BOOST preprocessor for macro definition

– Generate serialization / deserialization functions and structure that contains parameters

June 23, 2017 CS/NERSC Data Seminar

Macros 16

� Generate as much boilerplate code as possible for
– Serialization / deserialization of parameters
– Sending / executing RPC

� Single include header file shared between origin and target
� Make use of BOOST preprocessor for macro definition

– Generate serialization / deserialization functions and structure that contains parameters

June 23, 2017 CS/NERSC Data Seminar

Macros 16

� Generate as much boilerplate code as possible for
– Serialization / deserialization of parameters
– Sending / executing RPC

� Single include header file shared between origin and target

� Make use of BOOST preprocessor for macro definition

– Generate serialization / deserialization functions and structure that contains parameters

June 23, 2017 CS/NERSC Data Seminar

Macros 16

� Generate as much boilerplate code as possible for
– Serialization / deserialization of parameters
– Sending / executing RPC

� Single include header file shared between origin and target
� Make use of BOOST preprocessor for macro definition

– Generate serialization / deserialization functions and structure that contains parameters

June 23, 2017 CS/NERSC Data Seminar

Macros 16

� Generate as much boilerplate code as possible for
– Serialization / deserialization of parameters
– Sending / executing RPC

� Single include header file shared between origin and target
� Make use of BOOST preprocessor for macro definition

– Generate serialization / deserialization functions and structure that contains parameters

June 23, 2017 CS/NERSC Data Seminar

Macros: Serialization / Deserialization 17

MERCURY_GEN_PROC(
open_in_t,
((hg_string_t)(path))
((int32_t)(flags))
((uint32_t)(mode))

)

Macro

MERCURY_GEN_PROC(
struct_type_name,
fields

)

/* Define open_in_t */
typedef struct {

hg_string_t path;
int32_t flags;
uint32_t mode;

} open_in_t;

/* Define hg_proc_open_in_t */
static inline hg_return_t
hg_proc_open_in_t(hg_proc_t proc, void *data)
{

hg_return_t ret = HG_SUCCESS;
open_in_t *struct_data = (open_in_t *) data;

ret = hg_proc_hg_string_t(proc, &struct_data->path);
if (ret != HG_SUCCESS) {

HG_LOG_ERROR("Proc error");
ret = HG_FAIL;
return ret;

}

ret = hg_proc_int32_t(proc, &struct_data->flags);
if (ret != HG_SUCCESS) {

HG_LOG_ERROR("Proc error");
ret = HG_FAIL;
return ret;

}

ret = hg_proc_uint32_t(proc, &struct_data->mode);
if (ret != HG_SUCCESS) {

HG_LOG_ERROR("Proc error");
ret = HG_FAIL;
return ret;

}

return ret;
}

Generated Code

Generates
proc and struct

June 23, 2017 CS/NERSC Data Seminar

Mercury in HDF5 Stack 18

HDF5 API

VOLVirtual Object Layer

Native (H5) Metadata
Server

Raw
Mapping Remote

VOL plugins

VFL
Virtual

File Layer

posix secmpiio split

VFL drivers

File System

Mercury

June 23, 2017 CS/NERSC Data Seminar

Mercury in HDF5 Stack 18

HDF5 API

VOLVirtual Object Layer

Native (H5) Metadata
Server

Raw
Mapping Remote

VOL plugins

VFL
Virtual

File Layer

posix secmpiio split

VFL drivers

File System

Mercury

June 23, 2017 CS/NERSC Data Seminar

Other projects that already use Mercury 19

� Mochi (ANL) −−−−− >

� DAOS (Intel)
� DeltaFS (CMU)
� PDC (LBNL)
� MDHIM? / Legion? (LANL)

June 23, 2017 CS/NERSC Data Seminar

Current and Future Work 20

� Support cancel operations of ongoing RPC calls done
� Shared-memory plugin and multi-progress done
� Transparent Shared-memory selection ongoing
� Libfabric plugin and DRC support (auth keys) ongoing
� Group membership and Publish/subscribe model ongoing

June 23, 2017 CS/NERSC Data Seminar

Current and Future Work 20

� Support cancel operations of ongoing RPC calls done
� Shared-memory plugin and multi-progress done

� Transparent Shared-memory selection ongoing
� Libfabric plugin and DRC support (auth keys) ongoing
� Group membership and Publish/subscribe model ongoing

June 23, 2017 CS/NERSC Data Seminar

Current and Future Work 20

� Support cancel operations of ongoing RPC calls done
� Shared-memory plugin and multi-progress done
� Transparent Shared-memory selection ongoing
� Libfabric plugin and DRC support (auth keys) ongoing
� Group membership and Publish/subscribe model ongoing

June 23, 2017 CS/NERSC Data Seminar

Where to go next 21

� Mercury project page
– http://mercury-hpc.github.io/
– https://www.mcs.anl.gov/research/projects/mochi/tutorials/
– https://github.com/mercury-hpc
– Download / Documentation / Source / Mailing-lists

� Current and previous contributors (non exhaustive): Phil Carns (ANL), Rob Ross (ANL),
Scott Atchley (ORNL), Chuck Cranor (CMU), Xuezhao Liu (Intel), Quincey Koziol,
Mohamad Chaarawi, John Jenkins, Dries Kimpe

� Work supported by DOE Office of Science Advanced Scientific Computing Research
(ASCR) research and by NSF Directorate for Computer & Information Science &
Engineering (CISE) Division of Computing and Communication Foundations (CCF) core
program funding

http://mercury-hpc.github.io/
https://www.mcs.anl.gov/research/projects/mochi/tutorials/
https://github.com/mercury-hpc

