
A REMOTE PROCEDURE CALL APPROACH FOR EXTREME-SCALE SERVICES

Jerome Soumagne1, Philip Carns2, Dries Kimpe3, Quincey Koziol1, and Robert Ross2

1The HDF Group
2Argonne National Laboratory

3KCG

A REMOTE PROCEDURE CALL APPROACH FOR EXTREME-SCALE SERVICES

Jerome Soumagne1, Philip Carns2, Dries Kimpe3, Quincey Koziol1, and Robert Ross2

1The HDF Group
2Argonne National Laboratory

3KCG

Introduction

When working at exascale, the various constraints imposed by the extreme scale of the system bring new challenges for application users
and software/middleware developers. In that context, and to provide best performance, resiliency and energy efficiency, software may
be provided as a service oriented approach, adjusting resource utilization to best meet facility and user requirements. These services,
which can offer various capabilities, may be used on demand by a broad range of applications.

Remote procedure call (RPC) [1] is a technique that originally followed a client/server model and allowed local calls to be transparently
executed on remote resources. RPC consists of sending local function parameters to a remote target that executes the corresponding
function call, returning the result back to the caller. Reusable services require a communication method in order to be remotely accessed
and for this purpose, RPC can serve as a foundation. We introduce a building block that enables this ecosystem for software and
middleware developers with an RPC framework called Mercury [2].

RPC for High-Performance Computing

Mercury is designed for high-performance computing systems. It takes ad-
vantage of native high-speed interconnects and exposes the semantics
required for making nonblocking RPC as well as for supporting large data
arguments.

Origin Target

Network Abstraction Layer (NA)

RPC proc RPC proc

Metadata
(Point-to-point messaging)

Bulk Data
(RDMA transfer)

Fig. 1: Mercury defines two separate layers for metadata and bulk data transfers.

Basis for Reusable Services

To serve as a basis for accessing and enabling reusable services in a high-
performance computing environment, Mercury is designed to be both eas-
ily integrated and extended by having client and server concepts ab-
stracted by the notions of origin and target, since a server may also act
as a client, and vice versa.

s1

s2

s3

c1

c2

c3

s1

s2

s3

Compute
Nodes, origin
c1 has target s2

Service Nodes
(e.g., storage, vi-
sualization, etc),
s1 and s3 are tar-
gets of s2

Fig. 2: Mercury uses origin and target concepts for easy integration within distributed services.

Support for HPC Transports

Mercury provides a network plugin mechanism that can support existing
as well as future network fabrics. The network abstraction layer requires
only a minimal necessary set of functionality and therefore makes it easy
for developers to create a new plugin.

bmi / mpi cci future

NA
bmi / mpi: TCP/IP, IB
cci: TCP/IP, IB, Cray GNI,
shared memory

Fig. 3: Mercury can support existing as well as future network fabrics through NA plugins.

Enable High Concurrency

To enable high concurrency, the Mercury progress and execution model
is based on a callback model, as opposed to a traditional request-based
model.

Progress Callback 1

Callback 2

Callback 3Trigger

Push on Completion

Pop

Callbacks may be
wrapped around
pthreads, fibers, etc

Fig. 4: Mercury’s callback model allows flexible and non-blocking execution flows.

This has two advantages: first it allows upper layer services built on top
of Mercury to easily schedule operations by using for instance, a multi-
threaded execution model; second, it still allows definition, when necessary
and more convenient, of shim layers that simplify common cases, based
for instance on a request model to provide post/test operations.

Upcoming Challenges

Defining reusable software services at exascale is a challenge. For such, Mercury will be a valuable asset and serve as a basis by providing a lightweight and
modular RPC infrastructure for high-performance computing middleware, enabling both high-speed transfers and high concurrency.

Higher-level features such as multithreaded execution, pipelined operations, or other auxiliary features such as group membership, authorization, etc, are not
provided by Mercury directly, although Mercury is designed to provide the ecosystem so that these features can easily be built on top of it.

References

[1] A. D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. ACM Trans. Comput. Syst., 2(1):39–59,
1984.

[2] J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q. Koziol, A. Afsahi, and R. Ross. Mercury: Enabling
Remote Procedure Call for High-Performance Computing. In 2013 IEEE International Conference on Clus-
ter Computing (CLUSTER), pages 1–8, Sept 2013.

See Also

For more details about the Mercury
project, please visit the project page:
http://www.mcs.anl.gov/projects/mercury

Or the GitHub page:
http://github.com/mercury-hpc/mercury


